
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1

Efficient Data Allocation Model for Data Leakage

Detection System

Anju Sebastian1, Malliha A.2 and Sarah Prithvika P.C.3

1,2,3 Department of Computer Science and Engineering
Agni college of Technology. Anna University

Chennai, Tamil Nadu, India

Abstract

In the course of doing business, a distributor sometimes

needs to hand over sensitive data to supposedly trusted

agents. After giving a set of data to agents, the distributor

discovers some of those same objects in an unauthorized

place. The distributor must assess the likelihood that the

leaked data came from one or more agents, as opposed to

having been independently gathered by other means. Some

data allocation strategies (across the agents) can be used to

improve the probability of identifying leakages. In some

cases, “realistic but fake” data records can be injected to

further improve the chances of detecting leakage and

identifying the guilty party.

Keywords: Allocation strategies, data leakage, data

privacy, fake records, leakage model.

1. Introduction

In today’s business environment, there is a need to

communicate sensitive data. Corporates need to hand

over this sensitive information to a trusted third party.

After giving a set of objects to the third party, the

objects may be discovered in an unauthorized place.

The owner of the data is called the distributor and the

supposedly trusted third parties are called the agents.

The objective is to find out the source of data

leakage. For example, a hospital may give patient

records to researchers who will devise new

treatments. Similarly, a company may have

partnerships with other companies that require

sharing customer data. Another enterprise may

outsource its data processing, so data must be given

to various other companies. Traditionally, leakage

detection is handled by steganography, perturbation

and watermarking.

Steganography is the art and science of

communicating in a way which hides the existence of

the communication. The goal of Steganography is to

hide messages inside other harmless messages in

a way that does not allow any enemy to even detect

that there is a second message present. There are

some drawbacks in this technique. With encryption,

the receiver can be reasonably sure that he has

received a secret message when a seemingly

meaningless file arrives. It has either been corrupted

or is encrypted. But, with hidden data it is not so

clear; the receiver simply receives an image, and

needs to know that there is a hidden message and

how to locate it. Otherwise the receiver may not get

the message because he is unaware that the message

is hidden. Another limitation is due to the size of the

medium being used to hide the data. In order for

steganography to be useful, the message should be

hidden without any major changes to the object it is

being embedded in. This leaves limited room to

embed a message without noticeably changing the

original object. Robustness attacks, presentation

attacks, interpretation attacks and implementation

attacks may occur.

Perturbation is a very useful technique where the

data are modified and made less “sensitive" before

being handed to agents. For example, one can add

random noise to certain attributes, or one can replace

exact values by ranges [18]. However, in some cases,

it is important not to alter the original distributor’s

data. For example, if an outsourcer is doing our

payroll, he must have the exact salary and customer

bank account numbers. If medical researchers are to

treat patients (as opposed to simply computing

statistics), they may need accurate data for the

patients.

In watermarking a unique code is embedded in each

distributed copy. If that copy is later discovered in

the hands of an unauthorized party, the leaker can be

identified. There are many schemes used for

implementing watermarking. Public watermarking

and blind watermarking mean the same; the original

cover signal is not needed during the detection

process to detect the mark. Private watermarking and

non-blind-watermarking mean the same; the original

cover signal is required during the detection process.

Watermarking is not suitable in all cases because it

obscures the image, it involves modification of the

original data, it is time consuming, it can be easily

removed and it offers limited protection. So there is a

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2

need for alternate effective methods to overcome

these drawbacks. Some of the possible attacks in

watermarking are Scrambling Attack Sensitivity

Analysis Attack and Gradient Descendent Attack and

Collusion Attack.

A model to assess the "guilt" of agents must be

developed. Several algorithms are used for

distributing objects to agents, in a way that improves

the chances of identifying a leaker. Finally, the

option of adding "fake" objects to the distributed set

is also considered. Such objects do not correspond to

real entities but appear realistic to the agents. In a

sense, the fake objects act as a type of watermark for

the entire set, without modifying any individual

members. If it turns out that an agent was given one

or more fake objects that were leaked, then the

distributor can be more confident that agent was

guilty. In Section 2 the problem setup and the

notation that is used is introduced and in Sections 4

the Efficient Data Allocation Model for Data

Leakage Detection System.

2. Problem Setup and Notation

2.1 Entities and Agents

A distributor owns a set T = {t1. . . tm} of valuable

data objects. The distributor wants to share some of

the objects with a set of agents U1,U2, . . ., Un , but

does not wish the objects be leaked to other third

parties. The objects in T could be of any type and

size, e.g., they could be tuples in a relation or

relations in a database.

An agent Ui receives a subset of objects Ri T

determined either by a sample request or an explicit

request:

 Sample request Ri =SAMPLE(T,mi): Any subset

of mi records from T can be given to Ui

 Explicit request Ri = EXPLICIT(T,condi): Agent

Ui receives all T objects that satisfy condi

.

Example. Say that T contains customer records for a

given company A. Company A hires a marketing

agency U1 to do an online survey of customers. Since

any customers will do for the survey, U1 requests a

sample of 1,000 customer records. At the same time,

company A subcontracts with agent U2 to handle

billing for all California customers. Thus, U2 receives

all T records that satisfy the condition "state is

California".

Although it is not discussed here, this model can be

easily extended to requests for a sample of objects

that satisfy a condition (e.g., an agent wants any 100

California customer records). Also note that the

randomness of a sample is not considered. (The

assumption is that, if a random sample is required,

there are enough T records so that the to-be-presented

object selection schemes can pick random records

from T.)

2.2 Guilty Agents

After giving objects to agents, suppose the distributor

discovers that a set S T has leaked. This means that

some third party, known as the target, has been

caught having S. For instance, the target may be

displaying S on their website, or as part of a legal

discovery process, might have handed over S to the

distributor.

The agents U1. . .Un are suspected to have leaked the

data, as they were in possession of some of the data.

But, the agents can deny the allegations, and argue

that the target obtained the data through some other

means. For instance, if one of the objects in S

represents a customer X. If X is also a customer of

some other company, that company might have

provided the data to the target. Or it is possible that X

could be reconstructed from several publicly

available sources on the web.

The objective is to estimate the chances that the agent

leaked data as opposed to other sources. The more

data in S, the more difficult it is for the agents to deny

they did not leak anything. The “rarer” the objects, it

is more difficult to argue that the target obtained

them through other means. The likelihood that the

agents leaked the data must be found and if one of

them in particular was more likely to be the leaker.

For instance, an agent may be suspected more if one

of the S objects was only given to him, while the

other objects were given to all agents. The below

model describes this intuition.

An agent Ui is said to be guilty if it contributes one or

more objects to the target. The event that agent Ui is

the guilty agent is symbolized by Gi and the event

that agent Ui is the guilty agent for a given leaked set

S by Gi|S. The next step is to find the probability that

the agent Ui is the data leaker given the evidence S,

this is denoted by Pr{Gi|S}.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

3

3. Related Work

The guilt detection approach presented is related to

the data provenance problem [3]: tracing the lineage

of S objects implies essentially the detection of the

guilty agents. Tutorial [4] provides a good overview

on then research conducted in this field. Suggested

solutions are domain specific, such as lineage tracing

for data warehouses [5], and assume some prior

knowledge on the way a data view is created out of

data sources. The problem formulation with objects

and sets is more general and simplifies lineage

tracing, since data transformation from Ri sets to S is

not considered.

As far as the data allocation strategies are concerned,

the work is mostly relevant to watermarking that is

used as a means of establishing original ownership of

distributed objects. Watermarks were initially used in

images [16], video [8], and audio data [6] whose

digital representation includes considerable

redundancy. Recently, [1], [17], [10], [7], and other

works have also studied marks insertion to relational

data. This approach and watermarking are similar in

the sense of providing agents with some kind of

receiver identifying information. However, by its

very nature, a watermark modifies the item being

watermarked. If the object to be watermarked cannot

be modified, then a watermark cannot be inserted. In

such cases, methods that attach watermarks to the

distributed data are not applicable.

Finally, there are also lots of other works on

mechanisms that allow only authorized users to

access sensitive data through access control policies

[9], [2]. Such approaches prevent in some sense data

leakage by sharing information only with trusted

parties. However, these policies are restrictive and

may make it impossible to satisfy agents’ requests.

4. Data Allocation Problem

The main focus is on the data allocation problem.

The goal is to find how distributers can allocate data

"intelligently" to agents in order to improve the

chances of detecting a guilty agent? As illustrated in

fig 1, four different instances of this problem are

addressed, depending on the type of data requests

made by agents and whether "fake objects" are

allowed.

The two types of request that are being used were

mentioned in section 2.1: simple and explicit. Fake

objects are objects that are generated by distributors

which are not in set T. These objects are designed to

look like real objects and are given to agents along

with the objects in set T, in order to improve the

chances of detecting the guilty agent.

As mentioned earlier, there are four problem

instances and represented with the names EF, EḞ, SF,

and SḞ, where E stands for explicit requests, S for

sample requests, F for the use of fake objects, and Ḟ

for the case where fake objects are not allowed.

Note that, for simplicity, it is assumed that in the S

problem instances, all agents make sample requests,

while in the E instances, all agents make explicit

requests. The results can be extended to handle mixed

cases, with some explicit and some sample requests.

For that, a small example is provided to illustrate

how these mixed requests can be handled, but then do

not elaborate further.

Assume that there are two agents with requests

R1 = EXPLICIT(T,cond1) and R2 = SAMPLE(T',1),

where T' = EXPLICIT(T,cond2). Further say that

cond1 is "state=CA" (objects have a state field). If

agent U2 has the same condition cond2=cond1, it is

possible to create an equivalent problem with sample

data requests on set T'. That is, the problem will be

how to distribute the CA objects to two agents, with

R1 =SAMPLE(T',|T'|) and R2=SAMPLE(T',1). If

instead U2 uses condition "state=NY," two different

problems for sets T' and T- T' can be solved. In each

problem, there will be only one agent. Finally, if the

conditions partially overlap, R1 0, but R1 T',

three different problems for sets R1- T', R1 T', and

T'-R1 can be solved.

4.1 Fake Objects

Sometimes, the distributors may be able to add fake

objects to the distributed data, in order to improve the

chances of detecting agents that leak data. This may

not always be available, because fake objects may

impact the correctness of what agents do.

The idea of perturbing data to detect leakage is not

new, e.g., [1]. However, in most cases, individual

objects are perturbed, e.g., by adding random noise to

sensitive records, or adding a watermark to an image.

The set of distributor objects are perturbed by adding

fake elements.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4

Fig.1 Leakage problem instances.

In some cases, perturbing real objects by adding fake

objects may cause fewer problems. But in some

applications, even a small modification can cause

large problems. For example, let us consider medical

records as distributed data objects and agents as

hospitals. , even small modifications to the records of

actual patients may be undesirable.

The use of fake objects is inspired by the use of

"trace" records in phone number lists. In this case,

company A sells to company B a phone number list

to be used once (e.g., to send advertisements).

Company A adds trace records that contain phone

numbers owned by company A. Thus, each time

company B makes a call to the phone numbers on the

purchased phone number list, A receives a call. If

company A receives more than one call, company B

can be accused of improper use of data. The

distributor creates and adds fake objects to the data

that he distributes to agents. Fi Ri is the subset of

fake objects that agent Ui receives. As discussed

below, fake objects must be created carefully so that

agents cannot distinguish them from real objects.

In many cases, the distributor may be limited in how

many fake objects he can create. For example,

objects may contain phone numbers, and each fake

phone number requires a valid phone connection and

someone to answer calls (otherwise, the agent may

discover that the object is fake). If a call is received

from someone other than the agent who was given

the phone number, it is evident that the phone

number was leaked. Since we have to get a real

connection and have someone answer the call,

resources are consumed; the distributor may have a

limit of fake objects. If there is a limit, it is denoted

by B fake objects.

Similarly, the distributor may want to limit the

number of fake objects received by each agent so as

to not arouse suspicions and to not adversely impact

the agents activities. Thus, the distributor can send up

to bi fake objects to agent Ui. The creation of fake

object is modeled for agent Ui as a black box function

CREATEFAKEOBJECT(Ri,Fi, condi), that takes the

set of all objects Ri, the subset of fake objects Fi that

Ui has received so far, and condi as input and returns

a new fake object. This function needs condi to

produce a valid object that satisfies Ui condition. Set

Ri is needed as input so that the created fake object is

not only valid but also indistinguishable from other

real objects. For example, the creation function of a

fake payroll record that includes an employee rank

and a salary attribute may take into account the

distribution of employee ranks, the distribution of

salaries, as well as the correlation between the two

attributes. Ensuring that key statistics do not change

by the introduction of fake objects is important if the

agents will be using such statistics in their work. The

function CREATEFAKEOBJECT() has to be aware

of the fake objects Fi added so far, again to ensure

proper statistics.

The distributor can also use function

CREATEFAKEOBJECT() when it wants to send the

same fake object to a set of agents. In this case, the

function arguments are the union of the Ri and Fi

tables, respectively, and the intersection of the

conditions condi. Although the implementation of

CREATEFAKEOBJECT() is not dealt with, it is

noted that there are two main design options. The

function can either produce a fake object on demand

every time it is called or it can return an appropriate

object from a pool of objects created in advance.

4.2 Optimization Problem

While allocating data to the agents, the distributor has

one constraint and one objective. The constraint is to

satisfy the agent’s requests, by providing them with

all available objects that satisfy the given condition

or with the number of objects they request. His

objective is to find out the agent who leaked his data.

The constraint is considered as strict. The distributor

may not deny serving an agent request as in [13] and

may not provide agents with different perturbed

versions of the same objects as in [1]. The fake object

distribution is considered as the only possible

constraint relaxation.

The detection objective is ideal and intractable.

Detection would be assured only if the distributor

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

5

gave no data object to any agent (Mungamuru and

Garcia-Molina [d11] discuss that to attain "perfect"

privacy and security, utility must be sacrificed).

Instead, the following objective is used: maximize

the chances of detecting a guilty agent that leaks all

his data objects.

5. Conclusions

Ideally, there would be no need to hand over

sensitive data to agents that may unknowingly or

maliciously leak it. Even if we had to hand over

sensitive data, we could watermark each object so

that we could trace its origins with absolute certainty.

However, in many cases, we must indeed work with

agents that may not be fully trusted, and we may not

be certain if a leaked object came from an agent or

from some other source, since certain data cannot

admit watermarks.

In spite of these problems, it is possible to assess the

likelihood that an agent is responsible for a leak,

based on the overlap of his data with the leaked data

and the data of other agents, and based on the

probability that objects can be "guessed" by other

means. This model is relatively simple, but it is

efficient in finding the guilty agents. Distributing

objects intelligently can make a significant difference

in identifying guilty agents, especially in cases where

there is large overlap in the data that agents must

receive.

Our future work includes the investigation of agent

guilt models in real time applications in insurance

and banking sectors, so agents can be proved to be

guilty and data leakage can avoided.

References

[1] R. Agrawal and J. Kiernan, “Watermarking

 Relational Databases,” Proc. 28th Int’l Conf. Very

 Large Data Bases (VLDB ’02), VLDB

 Endowment, pp. 155-166, 2002.

[2] P. Bonatti, S.D.C. di Vimercati, and P. Samarati, “An

 Algebra for Composing Access Control Policies,”

 ACM Trans. Information and System Security, vol. 5,

 no. 1, pp. 1-35, 2002.

[3] P. Buneman, S. Khanna, and W.C. Tan, “Why and

 Where: A Characterization of Data Provenance,” Proc.

 Eighth Int’l Conf.Database Theory (ICDT ’01), J.V. den

 Bussche and V. Vianu, eds., pp. 316-330, Jan. 2001.

[4] P. Buneman and W.-C.Tan, “Provenance in Databases,”

 Proc. ACM SIGMOD, pp. 1171-1173, 2007.

[5] Y. Cui and J. Widom, “Lineage Tracing for General

 Data Warehouse Transformations,” The VLDB J., vol.

 12, pp. 41-58,2003.

[6] S. Czerwinski, R. Fromm, and T. Hodes, “Digital Music

 Distribution and Audio Watermarking,”

 http://www.scientificcommons.org/43025658, 2007.

[7] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An

 Improved Algorithm to Watermark Numeric Relational

 Data,” Information Security Applications, pp. 138-149,

 Springer, 2006.

[8] F. Hartung and B. Girod, “Watermarking of

 Uncompressed and Compressed Video,” Signal

 Processing, vol. 66, no. 3, pp. 283-301,1998.

[9] S. Jajodia, P. Samarati, M.L. Sapino, and V.S.

 Subrahmanian,“Flexible Support for Multiple Access

 Control Policies,” ACM Trans. Database Systems, vol.

 26, no. 2, pp. 214-260, 2001.

s[10] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting

 Relational Databases: Schemes and Specialties,” IEEE

 Trans. Dependable and Secure Computing, vol. 2, no.

 1, pp. 34-45, Jan.-Mar. 2005.

[11] B. Mungamuru and H. Garcia-Molina, “Privacy,

 Preservation and Performance: The 3 P’s of

 Distributed Data Management,” technical report,

 Stanford Univ., 2008.

[12] V.N. Murty, “Counting the Integer Solutions of a

Linear Equation with Unit Coefficients,” Math.

Magazine, vol. 54, no. 2, pp. 79-81, 1981.

[13] S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and

R. Motwani,“Towards Robustness in Query Auditing,”

Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB

’06), VLDB Endowment, pp. 151-162,2006.

[14] P. Papadimitriou and H. Garcia-Molina, “Data

 Leakage Detection,” technical report, Stanford Univ.,

 2008.

[15] P.M. Pardalos and S.A. Vavasis, “Quadratic

 Programming with One Negative Eigenvalue Is NP-

 Hard,” J. Global Optimization,vol. 1, no. 1, pp. 15-22,

 1991.

[16] J.J.K.O. Ruanaidh, W.J. Dowling, and F.M. Boland,

 “Watermarking Digital Images for Copyright

 Protection,” IEE Proc. Vision,Signal and Image

 Processing, vol. 143, no. 4, pp. 250-256, 1996.

[17] R. Sion, M. Atallah, and S. Prabhakar, “Rights

 Protection for Relational Data,” Proc. ACM

 SIGMOD, pp. 98-109, 2003.

[18] L. Sweeney, “Achieving K-Anonymity Privacy

 Protection Using Generalization and Suppression,”

 http://en.scientificcommons.org/43196131, 2002

